Wednesday, June 29, 2011

A Glitch in Pulsar J1718-3718

Pulsar diagram (© Mark Garlick)

Pulsars are noted as being some of the universe’s best clocks. Their highly magnetized nature gives rise to beams of high energy radiation that sweep out across the universe. If these beams pass Earth, they can rival atomic clocks in their precision. So precise are these timings, that the first extrasolar planet was discovered through the effects it had on this heartbeat. But in September of 2007, pulsar J1718-3719 appears to have had a seizure.

These disjunctions aren’t unprecedented. While not exactly frequent, such “glitches” have been noted previously in other pulsars and magnetars. These glitches are often displayed as a sudden change in the period of the pulsar suddenly drops and then slowly relaxes back to the pre-glitch value at a characteristic rate dependent on the previous value as well as how large the jump was. Behavior like this has been seen in other pulsars including PSR B2334+61 and PSR 1048-5397.

The size of a glitch is measured as a ratio of the change in speed due to the glitch as compared to that of the pre-glitch speed. For past glitches, these have generally been changes that are around a hundredth of a percent. While this may not sound like a large change, the stars on which they act are exceptionally dense neutron stars. As such, even a small change in rotational energy means a large amount of energy involved.

Previously, the largest known glitch was 20.5 x 10-6 for PSR B2334+61. The new glitch in PSR J1718-3718 beats this record with a frequency change of 33.25 x 10-6. Aside from being a record setter, this new glitch does not appear to be following the trend of returning to previous values. The changed period persisted for the 700 days astronomers at the Australia Telescope National Facility observed it. Pulsars tend to have a slow braking applied to them due to a difference between their rotational axes and their magnetic ones. This too generally returns to a standard value for a given pulsar following a glitch, but PSR J1718-3718 defied expectations here as well, having a persistently higher braking effect which has continued to increase.

Currently, astronomers know precious little about the effects which may cause these glitches. There is no evidence to suggest that the phenomenon is something external to the body itself. Instead, astronomers suspect that there are occasional alignments of the stars internal superfluid core which rotates more quickly, with the star’s crust that cause the two to occasionally lock together. Models of neutron stars have had some success at reproducing this odd behavior, but none have suggested an event like PSR J1718-3718. Instead, the authors of the recent study suggest that this may have been caused by a fracturing of the crust of the neutron star or some yet unknown internal reaction. The possibilities currently are not well constrained but studying future events like these will help astronomers refine their models.

Tagged as: Pulsars


View the original article here

NASA Sets July 8 for Mandatory Space Shuttle Grand Finale

NASA officially set July 8 to launch Space Shuttle Atlantis on the Grand Finale of the shuttle program. This photo shows Atlantis at Launch Pad 39A prior to installation of the cargo into the payload bay. Blastoff of the STS-135 mission is scheduled for 11:26 a.m. EDT from the Kennedy Space Center in Florida.
Credit: Ken Kremer

NASA Shuttle managers met today (28 June) and officially set July 8 as the launch date for the Grand Finale of the shuttle program by Space Shuttle Atlantis. And the NASA officials also emphasized that the STS-135 mission is absolutely crucial to the future well being and functioning of the International Space Station (ISS).

“This flight is incredibly important,” said Bill Gerstenmaier, NASA associate administrator for space operations. “The cargo that is coming up on this flight is really mandatory for space station. This mission is critical from a resupply standpoint. We will stay on orbit in case of some small orbiter failures.”

Atlantis primary goal is to dock with the million pound orbiting outpost and deliver the “Raffaello” logistics module. Raffaello is packed to the gills with some 5 tons of critical spare parts, food, water, provisions and science equipment that will keep the station stocked and the crew fed for a year. About one third of the cargo is food.

The STS 135 mission will buy invaluable time to keep the station running and science experiments continuing full tilt after the shuttles are retired and until replacement cargo vehicles are brought online.

STS-135 crew meets with journalists at base of Launch Pad 39A, Kennedy Space Center. From left; Mission Specialists Rex Walheim and Sandy Magnus; Pilot Doug Hurley and Commander Chris Ferguson. Credit: Ken Kremer

NASA hopes that commercial providers – SpaceX and Orbital Sciences – will soon pick up the slack and fill the supply void created by prematurely shutting down the shuttles now, before the replacement vehicles are functioning and proven. If the private company’s spacecraft are further delayed, than the ISS crew size may have to be reduced from 6 to 3 and station science operations could be significantly curtailed.

NASA announced the unanimous “GO” for the July 8 liftoff following a day long Flight Readiness Review at the Kennedy Space Center involving senior shuttle managers from the NASA and contractor teams.

NASA managers announced “GO” for launch of Atlantis on July 8 at a briefing for reporters at KSC. From left: Bill Gerstenmaier, NASA associate administrator for space operations, Mike Moses, Space Shuttle Program launch integration manager, Mike Leinbach, shuttle launch director. Credit: Chase Clark

“We had a very thorough review,” said Gerstenmaier. Shuttle managers reviewed the shuttle and launch pad systems, the risks associated with the flight as well as the payloads tucked inside the orbiter and an assortment of technical issues and problems that cropped up during the pre-launch processing.

The STS-135 crew comprises of just four astronauts, all veterans, led by Shuttle Commander Ferguson who is joined by Pilot Doug Hurley, and Mission Specialists Sandy Magnus and Rex Walheim. They are scheduled to fly back to Kennedy on Independence Day, Monday, July 4, for the final days of launch preparations.

Since there is no back up rescue shuttle, the shuttle astronauts would have to return to Earth abord Russian Soyuz capsules in the event of an on orbit emergency.

“We’re really looking forward to achieving this mission, putting station where it needs to be and finishing strong with the shuttle program here with STS-135,” said Mike Moses, Space Shuttle Program launch integration manager.

Moses added that NASA very much wants to extend the planned 12 day flight by one more day to give the crew more time to transfer cargo back and forth between Raffaello and the station.

NASA especially wants to fully load Raffaello for the return trip with experiment samples and voluminous no longer needed items of trash to give the station crew additional work and storage space. The extension depends on consumables use and will be decided once on orbit. Without the shuttle, down mass capability will be severely limited until the private providers are ready.

Technicians at the pad worked successfully to swap out a faulty shuttle engine valve and take X-rays of reinforcing joints on the External Tank after the recent tanking test, thus enabling NASA to approve the July 8 launch date.

“Atlantis is in great shape out at the pad,” said Mike Leinbach, shuttle launch director. “Team Atlantis is feeling good about the flow and the launch countdown and hope we’ll be able to get her off the ground on Friday the 8th as scheduled.”

“We expect between 500,000 and 750,000 visitors for the launch,” added Leinbach. “We have three launch attempts available on July 8, 9 and 10.”

The countdown clocks will start ticking backwards at 1 p.m. on July 5. STS-135 is the 135th and last shuttle mission.

This will be Atlantis’ 33rd flight and the 37th overall to the station.

Atlantis will be the last of NASA’s three shuttle orbiters to be retired.

Side view of Atlantis at Launch Pad 39A during pre-launch processing on June 28. Credit: Chase Clark

Read my prior features about the Final Shuttle mission, STS-135, here:
Final Shuttle Voyagers Conduct Countdown Practice at Florida Launch Pad
Final Payload for Final Shuttle Flight Delivered to the Launch Pad
Last Ever Shuttle Journeys out to the Launch Pad; Photo Gallery
Atlantis Goes Vertical for the Last Time
Atlantis Rolls to Vehicle Assembly Building with Final Space Shuttle Crew for July 8 Blastoff

Tagged as: End of the shuttle program, ISS, NASA, Space Shuttle, space shuttle atlantis, STS-135


View the original article here

3D Galaxies – Coming Straight On For You

As we’ve recently learned, the ATLAS3D project was able to study 260 individual galaxies and do some very amazing things. By imaging in both red and blue shift, astronomers were able to take stellar measurements and give us a clear picture of galaxy rotation. But looking at a computer generated image gives a picture just like you reading the text in this article – no dimension. By superimposing the velocity of the stars over the plane of the image, a new breakthrough in simulation can be made. And it’s coming straight on for you…

We understand images of grand spirals and their sweeping arms. We marvel at photos of dust-lanes in those far off distant island universes. Even the motley elliptical galaxy gives us a sense of shape. But what would happen if we could take a different angle at what we see? How would galaxy mergers affect rotation? When galaxies collide, it sparks new starbirth… But how would it look?

“Young galaxies seem to have lots of gas that hasn’t yet been turned into burning stars — and they spin fast, so they look like the poster-child galaxy with spiral arms and dust lanes.” says the ATLAS team. “By telling us how fast stars in a galaxy rotate around their galaxy’s centre, the ATLAS3D result changes our understanding of galaxies and how they evolve over time.”

By studying these new images and techniques, astronomers will be able to tell us more about galaxies that have survived a crash and lived to spin. It could very well be that mergers of this type don’t affect orderly rotation and overall symmetry. The ATLAS3D team has already prepared computer simulations and performed more telescope observations to test this idea. And it’s coming straight on… Straight on for you.

Original Story Source: University of Toronto. Animation: NASA/SAO/CXC/D.Berry Images: X-ray: NASA/CXC/UMass/D.Wang et al., UV: NASA/GSFC/UIT, Optical: NASA/HST/D.Wang et al.


View the original article here

Fermilab Unravels More About Neutrino Mystery

When operating at highest intensity, the NuMI beam line transports a package of 35,000 billion protons every two seconds to a graphite target. The target converts the protons into bursts of particles with exotic names such as kaons and pions. Like a beam of light emerging from a flashlight, the particles form a wide cone when leaving the target. A set of two special lenses, called horns (photo), is the key instrument to focus the beam and send it in the right direction. The beam particles decay and produce muon neutrinos, which travel in the same direction. Photo: Peter Ginter.

Right when you thought that Fermilab was a thing of the past, new work with neutrinos are exciting us all over again. The scientists associated with the MINOS experiment at the Department of Energy’s Fermi National Accelerator Laboratory just announced their findings of a rare phenomena – the transformation of muon neutrinos into electron neutrinos.

On June 14 the Japanese T2K experiment also found clues to this type of transformation. These dual reports could have a profound impact on the way we understand how neutrinos impacted the evolution of our Universe. What burning question do the results answer? Try why there is more matter than anti-matter. If muon neutrinos transform into electron neutrinos, neutrinos could be the reason.

“The Main Injector Neutrino Oscillation Search (MINOS) at Fermilab recorded a total of 62 electron neutrino-like events. If muon neutrinos do not transform into electron neutrinos, then MINOS should have seen only 49 events.” says Fermilab. “The experiment should have seen 71 events if neutrinos transform as often as suggested by recent results from the Tokai-to-Kamioka (T2K) experiment in Japan.”

Using entirely different methods, the two neutrino experiments went to work. To measure the transformation of muon neutrinos into other neutrinos, the MINOS experiment sends a muon neutrino beam 450 miles (735 kilometers) through the Earth from the Main Injector accelerator at Fermilab to a 5,000-ton neutrino detector, located half a mile underground in the Soudan Underground Laboratory in northern Minnesota. The nearly twin detectors have different purposes. At Fermilab the purity of the muon neutrino beam is calibrated while Soudan detects electron and muon activity. It’s a fast trip, too…but just one four hundreths of a second is all it takes for these incredibly tiny particles to transform.

“Science usually proceeds in small steps rather than sudden, big discoveries, and this certainly has been true for neutrino research,” said Jenny Thomas from University College London, co-spokesperson for the MINOS experiment. “If the transformation from muon neutrinos to electron neutrinos occurs at a large enough rate, future experiments should find out whether nature has given us two light neutrinos and one heavy neutrino, or vice versa. This is really the next big thing in neutrino physics.”

For more information read the Fermilab Press Release.


View the original article here

Magnetic Ropes Skip To Solar Storms

On the left, SDO AIA image at the wavelength of 131 angstroms observing the Sun’s atmosphere at a temperature of about ten million degrees. The magnetic rope is seen as the thick looped structure extending above the edge of the Sun. On the right, SDO AIA image at wavelength 171 angstroms observing the corona at a temperature of about one million degrees, showing surrounding cool magnetic field lines are pushed away by the intruding magnetic rope seen on the left. Both images are taken almost simultaneously (within three seconds of each other) at 03:41 UT. (Credit: NASA and George Mason University).

It is our current understanding that the Sun’s magnetic fields and field lines are the cause of solar storms. However, there is no solid evidence as to what form magnetic field lines may take ahead of an energetic outbreak. We know there can be loops connected to the surface – but normally they take the sting off an eruption, rather than cause one. Thanks to a discovery made by associate professor Jie Zhang and his graduate student Xin Cheng using images from the NASA Solar Dynamics Observatory (SDO) spacecraft, we’re shedding a little light on a solar mystery.

An event called a magnetic rope is assumed to be the progenitor of solar storms – but its existence was far from certain. The phenomena may consist of many magnetic field lines wrapping around a center axis – possibly twisting around each other – and producing an electric current. The current might then be able to generate enough electromagnetic force to overpower the withholding magnetic field lines and cause the rope to move outward at speeds we so far haven’t been able to document… Until now.

Thanks to the images taken by the Atmospheric Imaging Assembly (AIA) telescope on board the SDO, Zhang was able to isolate an area of the Sun where a magnetic rope was forming. What the images provided was a unique look at an active region ahead of an eruption. Revealed was a long and low-lying channel which produces temperatures up to 10 million degrees – and continues heating. When it reaches a critical point this “hot channel” reveals a never before seen feature unlike the surrounding magnetic field lines… possibly the theoretical magnetic rope.

“The magnetic rope triggers a solar eruption. Scientists have been debating whether or not this magnetic rope exists before a solar eruption. I believe that the result of this excellent observation helps finally solve this controversial issue,” says Zhang.

As we’re all aware, it would be a boost to understand and predict solar storms. While our Earth’s “magnetic shield” protects us from the majority of direct exposure, we have satellites, astronauts and terrestrially-based power sources which could benefit from an early warning scenario.

“Understanding the eruption process of these storms will definitely help us better predict them,” says Zhang. “We cannot prevent solar storms, just like we cannot prevent earthquakes or volcanoes. But the development of prediction capacity can help mitigate adverse effects. For instance, satellite operators can power-down key systems to prevent the possible damage to the systems.”

Original Story Source: MSNBC.


View the original article here

Tuesday, June 28, 2011

Burt Rutan’s Race To Space: A Primer For Things To Come

Dan Linehan's recent offering entitled "Burt Rutan's Race to Space" is a concise, yet detailed, accounting of how one man revolutionized air and space travel. Photo Credit: Zenith Press

Voyager, Proteus and SpaceShipOne have become aerospace legends. As has the man who established them all – Burt Rutan. Zenith Press has released a chronicle of the man and his machines entitled Burt Rutan’s Race to Space: The Magician of Mojave and His Flying Innovations. The book provides a chronicle of all the air and spacecraft that have soared off of Rutan’s blueprints and into reality.

The book’s first main segment is a large section which is essentially a catalog of the numerous craft that Rutan has produced over the decades. Many of the flying machines have their unique characteristics highlighted within the 160 pages of this book. Fear not, this tome is wallpapered with images – most of which are color (175 color images to 55 black and white).

SpaceShipOne now hangs in the Smithsonian's Air & Space Museum in Washington D.C. - between the Spirit of St. Louis and the Bell X-1. Photo Credit: Scaled Composites

Some of the most interesting of these images are not the glossy stills of air or spacecraft in action but rather the simple drawings that are done by the man himself. These sketches, some little more than cartoons others just simplistic line-drawings, highlight the genius that is Rutan and provide an insight into how his mind works.

The nature of the book changes somewhat when one reaches the chapter entitled, “The Scaled Composites Years.” From this point on, the book’s focus narrows to concentrate on Rutan’s X-PRIZE efforts – and beyond.

Rutan's dreams of flight started at an early age. He was a child when he first began crafting airplanes out of wood. Photo Credit: Virgin Galactic

The book was written by Dan Linehan and is his second detailing the efforts of Rutan and Scaled Composites (the first was SpaceShipOne: An Illustrated History). In short, the freelance writer is steeped in all things Rutan. Whereas his first work on the subject covered the history-making flight of SpaceShipOne, this effort is a general overview of Rutan and his legacy. But be forewarned, there are many projects that span the entire realm of aerospace that Rutan and company have been involved with that might surprise you.

Given that the Mojave “magician” has retired recently – this book is timely, enjoyable and acts as a wonderful window into the mind of the man that has revolutionized flight. SpaceShipTwo continues to successfully complete test after test – making Burt Rutan’s Race to Space a primer for things to come. The book retails for $30, and it is well-worth the price and will be a welcome addition to any space buff’s collection.

SpaceShipTwo being carried underneath White Knight Two is currently being tested in preparation to send average citizens into suborbital space. Photo Credit: Virgin Galactic

Tagged as: Book Reviews, Burt Rutan


View the original article here

End of the Shuttle Era: Q & A With Shuttle Launch Director Mike Leinbach

NASA's Shuttle Launch Director Mike Leinbach has been with NASA since 1984 and took a moment to share his thoughts about the future. Photo Credit: Jason Rhian

CAPE CANAVERAL Fla. – He has been with the shuttle program for the past three decades and has witnessed both its tragedies and its triumphs. NASA’s Shuttle Launch Director Mike Leinbach reflected on the end of the shuttle era when interviewed this week. He talked a bit about his plans for the future as well as what he thinks people can expect from both him and his team on launch day.

Q: The Terminal Countdown Demonstration Test (TCDT) for STS-135 has just wrapped up, is this is a period of accelerated work for you and your team or is this a time when you can catch your breath?

Leinbach: “This TCDT was a little different; we had a very busy period getting the crew
ready for this mission. On July 4 we’ll have a bit of a break and then things
will pick right back up again as we get ready for launch.”

Q: What do you think you will be feeling when that final launch occurs?

Leinbach: “I don’t know, I mean I have thought a lot about this…I don’t know what it’s
going to be like. For the last flight of Discovery we had one more launch for
both Endeavour and Atlantis, well now this really and truly the last flight of
the shuttle program… so it’s going to be a very reflective time.”

Leinbach gestures toward his former secretary before the start of the interview. Photo Credit: Jason Rhian

Q: Do you think anything will be special about this mission?

Leinbach: “The launch itself will be very much any other launch. When the guy’s are
working on the consoles they are very serious about what they are doing.
They won’t be distracted by the fact that it is the last one.

Q: Speaking of your job – it keeps you very busy, have you had any time to reflect?

Leinbach: “For the moment I still have a lot to do concluding TCDT, but this Saturday I
am planning on driving out to the launch pad and just looking up at Atlantis
and just soaking it all in, all by myself.”

Leinbach started working for NASA as a structural engineer in 1984, his words are softly spoken which tends to lend them even more weight. His first mission as launch director was STS-114. This was the first shuttle launch after the loss of the space shuttle Columbia in 2003. Leinbach led the recovery team searching for Columbia’s debris in Texas. A year later in 2004 Leinbach was awarded the Presidential Rank Award, which is given in recognition of long-term accomplishments.

Atlantis will carry the four person crew of STS-135 to the International Space Station on a resupply flight designed to keep the orbiting outpost well stocked after the shuttles are decommissioned. The mission is scheduled to last twelve days, launching on July 8 at 11:26 a.m. EDT. The crew consists of Commander Chris Ferguson, Pilot Doug Hurley and Mission Specialists Sandra Magnus and Rex Walheim.

The Launch Control Center or LCC is where the final "go" "no-go" for launch is determined. Photo Credit: Jason Rhian

Tagged as: history, Mike Leinbach, NASA, Space Flight, Space Shuttle


View the original article here

Final Shuttle Voyagers Conduct Countdown Practice at Florida Launch Pad

STS-135 crew at TCDT Q&A session with journalists at base of Launch Pad 39A, Kennedy Space Center. From left; Mission Specialists Rex Walheim and Sandy Magnus; Pilot Doug Hurley
and Commander Chris Ferguson. Credit: Ken Kremer

KENNEDY SPACE CENTER – The “Final Four” shuttle astronauts who will ever voyage to Earth orbit aboard a NASA Space Shuttle Orbiter jetted into the Kennedy Space Center (KSC) this week for their final simulated countdown training at the seaside Florida Launch Pad.

The all veteran crew for the STS-135 mission arrived at Kennedy’s Shuttle Landing Facility (SLF) on twin T-38 jets for four days of comprehensive flight training for what’s known as the Terminal Countdown Demonstration Test (TCDT). Along with all other shuttle flight related activities, it’s the very last time this training will ever occur.

The TCDT is part of the ritual of training for all shuttle crews that takes place in the last few weeks preceding a liftoff and that concludes with a full countdown dress rehearsal from inside Atlantis at the launch pad.

The last ever shuttle crew jets into KSC for TCDT training at KSC aboard T-38 jets. From left; Sandy Magnus, Doug Hurley, Commander Chris Ferguson and Rex Walheim. Credit: Ken Kremer

Chris Ferguson is leading the STS-135 mission and he will be recorded in history as the final Space Shuttle Commander. This will be Ferguson’s third shuttle flight and second one as Commander. Also aboard are Pilot Doug Hurley and Mission Specialists Sandy Magnus and Rex Walheim.

The quartet of space flyers are due to blast off aboard Space Shuttle Atlantis on July 8 at 11:26 a.m. EDT for the “Grand Finale” of NASA’s thirty year old Space Shuttle Program. If all goes according to plan the end of the Shuttle Era is less than 1 month away.

It’s a bittersweet moment for everyone working on the shuttle program. Proud to be part of a magnificent adventure with the most complicated machine ever built by humans, but simultaneously sad that the program is ending well before its true flight time is up and with no concrete timetable to replace the trio of majestic spaceships.

“We are incredibly proud to represent this, the final flight,” said STS-135 Commander Chris Ferguson after touchdown to dozens and dozens of journalists gathered at the shuttle landing strip to greet the astronauts.

“I speak on behalf of the crew, everyone in the astronaut office, and I’m sure everybody here at KSC in saying that we are just trying to savor the moment,” Ferguson added. “As our children and our children’s children ask us, we want to be able to say, ‘We remember when there was a space shuttle.”

The first order of business for Ferguson and Hurley was to practice shuttle landings in the Shuttle Training Aircraft (STA), which is a modified Gulfstream II jet.

During the TCDT period, the crew engaged in mission briefings at the Launch Control Center which is the brain of shuttle launch operations, payload familiarization and training at the Space Station Processing Facility, fire suppression training, range safety and security briefings and emergency escape training in an M113 armored personnel carrier near Launch Pad 39A. Read more in my upcoming features.

On the last day of TCDT, the astronauts donned their orange launch and entry suits, journeyed to the pad in the Astrovan and were strapped to their assigned seated inside the orbiter exactly as will occur on launch day for a full dress rehearsal of the launch countdown.

STS-135 Crew at TCDT pad emengency training at Pad 39A. From left are Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim. Credit: NASA/Kim Shiflett

The crew also met with over 100 reporters for a Q & A session at the base of Launch Pad 39A which was back dropped by a thrilling view of Shuttle Atlantis atop the Mobile Launch Platform and the gigantic Flame Duct which directs the rocket exhaust way from the shuttle stack during launch.

“We’re very honored to be in this position,” Ferguson said to reporters at the foot of the pad. “There are many people who could be here. When the dice fell our names were facing up. We consider ourselves fortunate and lucky.”

“I think each of us feels a little extra burden to make sure we put on the best possible face forward for the last go around of this. The crew’s very prepared and we’re going to do a fantastic job.”

“I don’t think that the full magnitude of the moment will really hit us until the wheels have stopped on the runway,” said Ferguson, reflecting on the significance of the grand finale of all shuttle missions. “I’m not sure words will really be able to capture for the crew and for the entire shuttle workforce just how much the shuttle program has meant to us for the last 30 years.”

“TDCT is very comprehensive, hands on and invaluable training at the place you’re going to do it,” said Hurley. “Everything is a just a little bit different when you are in the real vehicle so this is a great way to get you ready for launch day – when it counts!”

Tucked inside Atlantis cargo bay is the Italian- built “Raffaello” logistics module, the primary payload. Raffaello is loaded full with some five tons of critical spare parts, crew supplies and science experiments that will be delivered to the International Space Station (ISS) during the 12 day flight.

The secondary payload is the Robotic Refueling Mission (RRM) which will demonstrate tools and techniques to refuel satellites in orbit.

The STS-135 crew arrive at KSC aboard a wave of T-38 jets for countdown, payload and emergency training. Credit: Ken Kremer

“Sandy Magnus is our ‘transfer czar’ in charge of emptying and filling Raffaello,” said Ferguson. Magnus is an ideal choice for the mission since she lived for months aboard the orbiting outpost and is familiar with its nook and crannies.

“We feel very honored to be on this flight and are very focused to perform it well,” said Magnus. “We are just the tip of the iceberg of a huge group of people who plan and get the hardware ready and prepare all our procedures.”

“I often think about how we will launch from the exact same launch pad that Apollo 11 launched at to go to the moon. It gives you goose bumps,” said Walheim.

Media with STS-135 astronuats at TCDT Q&A session at Launch Pad 39A. Credit: Ken Kremer

Watch the TDCT Launch Pad press conference here:

Read my prior features about the Final Shuttle mission, STS-135, here:
Final Payload for Final Shuttle Flight Delivered to the Launch Pad
Last Ever Shuttle Journeys out to the Launch Pad; Photo Gallery
Atlantis Goes Vertical for the Last Time
Atlantis Rolls to Vehicle Assembly Building with Final Space Shuttle Crew for July 8 Blastoff

Tagged as: international space station, ISS, MPLM, NASA, Raffaello, Space Shuttle, space shuttle atlantis, STS-135


View the original article here

Close Approach: Images and Animations of Asteroid 2011 MD

Animation of 2011 MD on Monday, June 27, 2011 at 09:30 UTC. Credit: Ernesto Guido, Nick Howes and Giovanni Sostero at the Faulkes Telescope South. Click for original larger version.

Today, Monday June 27 at about 17:00 UT, asteroid designated as 2011 MD will pass only 12,300 kilometers (7,600 miles) above the Earth’s surface. Here are some images and an animation of the asteroid’s close approach taken around 09:30 UT taken by Ernesto Guido, Nick Howes and Giovanni Sostero at the Faulkes Telescope South through a 2.0-m f/10.0 Ritchey-Chretien and a CCD. The trio of astronomers say that at the time these images were taken, the asteroid had a magnitude of about 14.5. At the moment of its close approach, 2011 MD will be bright as magnitude ~11.8.

The animation above shows the object’s movement in the sky. Each image was 20-second exposure.

See more below from Guido, Howes and Sostero.

Below is a single 20-second exposure also taken by the 2 meter telescope at Faulkes Telescope South, and just below that is another image using a RGB filter.

2011 MD on Monday, June 27, 2011 at 09:30 UTC. Credit: Ernesto Guido, Nick Howes and Giovanni Sostero at the Faulkes Telescope South

2011 MD on Monday, June 27, 2011 at 09:30 UTC with RBG filter. Credit: Ernesto Guido, Nick Howes and Giovanni Sostero at the Faulkes Telescope South.

Some early observers have suggested that 2011 MD — which is only 5-20 meters in diameter — could possibly be a piece of space junk, such as a rocket booster. However, additional observations and further calculations show that this asteroid could not have been close enough to Earth any time during the space age to have started off as a rocket booster.

Trajectory of 2011 MD from the general direction of the Sun. Credit: NASA

Thanks to Ernesto Guido, Nick Howes and Giovanni Sostero for sharing their image with Universe Today. See more of their work, as well as more information about asteroid 2011 MD at their Remanzacco Observatory website. See here for more information on the Faulkes Telescope.

Again, scientists at NASA’s Asteroid Watch program at JPL say there is no danger of the asteroid hitting Earth. “There is no chance that 2011 MD will hit Earth but scientists will use the close pass as opportunity to study it w/ radar observations,” they said on the the @AsteriodWatch Twitter feed. “Asteroid 2011 MD measures about 10 meters. Stony asteroids less than 25 m would break up in Earth’s atmosphere and not cause ground damage.”

Tagged as: Asteroid 2011 MD, Asteroids, Ernesto Guido, Giovanni Sostero, Nick Howes, Remanzacco Observatory


View the original article here

Satellite Looks Down the Eye of Erupting Nabro Volcano

This false color satellite image shows active lava flows of the Nabro volcano in Eritrea on June 24, 2011. Credit: the Advanced Land Imager (ALI) aboard the Earth Observing-1 (EO-1) satellite.

Wow! What an amazing and detailed top-down view of an active volcano! This is the Nabro Volcano, which has been erupting since June 12, 2011. It sits in an isolated region on the border between Eritrea and Ethiopia and satellite remote sensing is currently the only reliable way to monitor the ongoing eruption, according to the NASA Earth Observatory website. The bright red portions of the false-color image (above) indicate hot surfaces. See below for a zoomed-in look. Both images were taken by the Advanced Land Imager (ALI) aboard the Earth Observing-1 (EO-1) satellite.

This natural-color image shows a close-up view of the volcanic plume and eruption site of the Nabro volcano. Credit: the Advanced Land Imager (ALI) aboard the Earth Observing-1 (EO-1) satellite

Robert Simmon of the NASA Earth Observatory website describes the scenes:

Hot volcanic ash glows above the vent, located in the center of Nabro’s caldera. To the west of the vent, portions of an active lava flow (particularly the front of the flow) are also hot. The speckled pattern on upstream portions of the flow are likely due to the cool, hardened crust splitting and exposing fluid lava as the flow advances. The bulbous blue-white cloud near the vent is likely composed largely of escaping water vapor that condensed as the plume rose and cooled. The whispy, cyan clouds above the lava flow are evidence of degassing from the lava.

The natural-color image (lower) shows a close-up view of the volcanic plume and eruption site. A dark ash plume rises directly above the vent, and a short, inactive (cool) lava flow partially fills the crater to the north. A gas plume, rich in water and sulfur dioxide (which contributes a blue tint to the edges of the plume) obscures the upper reaches of the active lava flow. Black ash covers the landscape south and west of Nabro.

Limited reports from the region say that at least 3,500 people and up to 9,000 that have been effected by the eruption, with at least 7 deaths caused by the erupting volcano. The ash plume has also disrupted flights in the region.

For more information see NASA’s Earth Observatory website, and BigThink

Tagged as: Earth Observation, Natural Disasters, Satellites, volcanoes


View the original article here

Getting Closer: Images, Video of Asteroid 2011 MD

Asteroid 2011 MD. Credit: Peter Lake

Accomplished amateur astronomer and blogger Peter Lake, a.k.a “AstroSwanny” from Australia captured some of the first images of what will be a very close pass of Earth by asteroid 2011 MD. He actually took the image at 07:00 UTC on June 26th with a 20 inch telescope in New Mexico controlled via his iPhone, through the Global Rent-A-Scope program. Ahh, the wonders of technology! As Peter says, “Its not every day, that an asteroid misses by less than 3-5 earth Radii.”

The asteroid, which was only detected last week, is about 25 to 55 feet (8 to 18 m) across, is expected to pass less than 8,000 miles above Earth’s surface around 1 p.m. EDT (17:00 UT) on Monday, June 27th. The time of closest approach will be observable from South Africa and parts of Antarctica, but the approach will be visible across Australia, New Zealand, southern and eastern Asia, and the western Pacific.

Below is a video he compiled of the his observations of the pass, and used ten 120-second images for the video.

Peter also noted that “Its close approach is being followed with great interest, more for honing the skills and techniques of the Minor Planet Center and the network of asteroid hunting astronomers, rather than because it poses any real danger.”

Thanks to Peter and his Aartscope Blog for sharing these views with Universe Today.

Tagged as: Asteroid 2011 MD, Asteroids, Peter Lake


View the original article here

Dramatic New NASA Animation Depicts Next Mars Rover in Action

NASA's Mars Science Laboratory Curiosity rover
Curiosity is a mobile robot for investigating Mars' past or present ability to sustain microbial life. Curiosity is being tested in preparation for launch in the fall of 2011. The mast, or rover's "head," rises to about 2.1 meters (6.9 feet) above ground level, about as tall as a basketball player. This mast supports two remote-sensing instruments: the Mast Camera, or "eyes," for stereo color viewing of surrounding terrain and material collected by the arm; and, the ChemCam instrument, which is a laser that vaporizes material from rocks up to about 9 meters (30 feet) away and determines what elements the rocks are made of.
Credit: NASA/JPL-Caltech.
New NASA High Resolution Curiosity Animations and Stills below

NASA’s next Mars rover, the Curiosity Mars Science Laboratory, will soon embark on a quantum leap in humankind’s scientific exploration of the Martian surface -the most Earthlike planet in our Solar System.

To get a birds eye understanding of Curiosity’s magnificent capabilities, check out the dramatic new high resolution animation below which depicts NASA’s next Mars rover traversing tantalizing terrain for clues to whether Martian microbial life may have existed, evolved and been sustained in past or present times.

The new action packed animation is 11 minutes in length. It depicts sequences starting with Earth departure, smashing through the Martian atmosphere, the nail biting terror of the never before used rocket-backpack sky crane landing system and then progressing through the assorted science instrument capabilities that Curiosity will bring to bear during its minimum two year expedition across hitherto unseen and unexplored Martian landscapes, mountains and craters.

Curiosity is equipped with 10 science instruments. The three meter long robot is five times the weight of any previous Mars rover.

Those who closely follow the adventures of NASA’s Spirit and Opportunity rovers, like myself, will quickly recognize several of the panoramic scenes which have been included to give a realistic feeling of vistas to expect from the car sized Curiosity rover.

Here is a shorter 4 minute animation with expert narration

Along the way you’ll experience Curiosity zapping rocks with a laser, deftly maneuvering her robotic arm and camera mast and retrieving and analyzing Martian soil samples.

“It is a treat for the 2,000 or more people who have worked on the Mars Science Laboratory during the past eight years to watch these action scenes of the hardware the project has developed and assembled,” said Mars Science Laboratory Project Manager Pete Theisinger at NASA’s Jet Propulsion Laboratory, Pasadena, Calif, in a NASA statement. “The animation also provides an exciting view of this mission for any fan of adventure and exploration.”

Curiosity - The Next Mars Rover analyzes Martian rocks
Curiosity rover examines a rock on Mars with a set of tools at the end of the rover's arm, which extends about 2 meters (7 feet). Two instruments on the arm can study rocks up close. Also, a drill can collect sample material from inside of rocks and a scoop can pick up samples of soil. The arm can sieve the samples and deliver fine powder to instruments inside the rover for thorough analysis. Credit: NASA/JPL-Caltech

Curiosity was flown this week from her birthplace at NASA’s Jet Propulsion Laboratory in California to her future launch site in Florida aboard a C-17 military cargo transport aircraft.

She arrived at the Shuttle Landing Facility (SLF) at the Kennedy Space Center on June 22. The SLF is the same landing strip where I watched the STS-135 crew arrive for NASA’s final shuttle mission just days earlier days for their final launch countdown training.

NASA has scheduled Curiosity to blast off for the red planet on Nov. 25, 2011 from Cape Canaveral Air Force Station aboard an Atlas V rocket. Curiosity will touchdown in August 2012 at a landing site that will be announced soon by Ed Weiler, NASA Associate Administrator for the Science Mission Directorate in Washington, D.C.

Curiosity rover traverses new Martian terrain in search of habitats for microbial life. Credit: NASA/JPL-Caltech

Read my prior features about Curiosity
Packing a Mars Rover for the Trip to Florida; Time Lapse Video
Test Roving NASA’s Curiosity on Earth
Curiosity Mars Rover Almost Complete
Curiosity Rover Testing in Harsh Mars-like Environment

Tagged as: Curiosity, Curiosity Rover, Mars, Mars Rovers, NASA, Opportunity Rover, Search for Life, Spirit Rover


View the original article here

Space Junk Forces ISS Crew to Takes Shelter in Soyuz

A view of the ISS from a Soyuz spacecraft while space shuttle Endeavour was docked. Credit: NASA/ESA

The six crewmembers on board the International Space Station were told to take shelter in the two Russian Soyuz spacecraft early Tuesday because Space Command predicted a piece of space junk could make a close approach to the station. Radar tracking indicated the debris would make its close pass at 8:08 a.m. EDT (12:08 UTC), coming within about 243 meters (800 feet) of the station and well within the “pizza box” -shaped area around the ISS, but when no impact was detected the crew was told they could reenter the station and resume normal operations.

NASA’s Chief Scientist for Orbital Debris Nicholas L. Johnson told Universe Today during a previous “conjuction” of space debris and the ISS that on average, close approaches to ISS occur about three times a month. An approach of debris is considered “close” only when it enters an imaginary “pizza box” shaped region around the station, measuring 0.75 kilometers above and below the station and 25 kilometers on each side( 2,460 feet above and below and 15.6 by 15.6 miles).

Johnson said that small pieces of debris have already collided with ISS on many occasions, but these debris to date have not affected the safety of the crew or the operation of the mission. “The dedicated debris shields on ISS can withstand particles as large as 1 cm in diameter,” he said.

The piece of space junk was detected too late for the station to perform an evasive maneuver, so the crew was told to “shelter in place” on the two Soyuz spacecrafts. The crew on board is commander Andrey Borisenko, Alexander Samokutyaev and Ronald Garan, who took shelter aboard the Soyuz TMA-21 spacecraft docked to the Poisk module, and Sergei Volkov, Michael Fossum and Furukawa who went on to the Soyuz TMA-02M spacecraft docked to the Rassvet module.

Tagged as: ISS, space debris, space junk, Space Station


View the original article here

Astronomy Without A Telescope – Backgrounds

Thousands of galaxies seen by the Herschel Space Observatory through the Lockman Hole. Credit: ESA.

You’ve probably heard of the cosmic microwave background, but it doesn’t stop there. The as-yet-undetectable cosmic neutrino background is out there waiting to give us a view into the first seconds after the Big Bang. Then, looking further forward, there are other backgrounds across the electromagnetic spectrum – all of which contribute to what’s called the extragalactic background light, or EBL.

The EBL is the integrated whole of all light that has ever been radiated by all galaxies across all of time. At least, all of time since stars and galaxies first came into being – which was after the dark ages that followed the release of the cosmic microwave background.

The cosmic microwave background was released around 380,000 years after the Big Bang. The dark ages may have then persisted for another 750 million years, until the first stars and the first galaxies formed.

In the current era, the cosmic microwave background is estimated to make up about sixty percent of the photon density of all background radiation in the visible universe – the remaining forty per cent representing the EBL, that is the radiation contributed by all the stars and galaxies that have appeared since.

This gives some indication of the enormous burst of light that the cosmic microwave background represented, although it has since been red-shifted into almost invisibility over the subsequent 13.7 billion years. The EBL is dominated by optical and infrared backgrounds, the former being starlight and the latter being dust heated by that starlight which emits infrared radiation.

Just like the cosmic microwave background can tell us something about the evolution of the earlier universe, the cosmic infrared background can tell us something about the subsequent evolution of the universe – particularly about the formation of the first galaxies.

The power density of the universe's background radiation plotted over wavelength. The cosmic microwave background, though substantially red-shifted due to its age, still dominates. The remainder, extragalactic background light, is dominated by optical and infrared radiation, which have power densities several orders of magnitude higher than the remaining radiation wavelengths.

The Photodetector Array Camera and Spectrometer (PACS) Evolutionary Probe is a ‘guaranteed time’ project for the Herschel Space Observatory. Guaranteed means there always a certain amount of telescope time dedicated to this project regardless of other priorities. The PACS Evolutionary Probe project, or just PEP, aims to survey the cosmic infrared background in the relatively dust free regions of the sky that include: the Lockman Hole; the Great Observatories Origins Deep Survey (GOODS) fields; and the Cosmic Evolution Survey (COSMOS) field.

The Herschel PEP project is collecting data to enable determination of rest frame radiation of galaxies out to a redshift of about z =3, where you are observing galaxies when the universe was about 3 billion years old. Rest frame radiation means making an estimation of the nature of the radiation emitted by those early galaxies before their radiation was red-shifted by the intervening expansion of the universe.

The data indicate that infrared contributes around half of the total extragalactic background light. But if you just look at the current era of the local universe, infrared only contributes one third. This suggests that more infrared radiation was produced in the distant past, than in the present era.

This may be because earlier galaxies had more dust – while modern galaxies have less. For example, elliptical galaxies have almost no dust and radiate almost no infrared. However, luminous infrared galaxies (LIRGs) radiate strongly in infrared and less so in optical, presumably because they have a high dust content.

Modern era LIRGs may result from galactic mergers which provide a new supply of unbound dust to a galaxy, stimulating new star formation. Nonetheless, these may be roughly analogous to what galaxies in the early universe looked like.

Dustless, elliptical galaxies are probably the evolutionary end-point of an galactic merger, but in the absence of any new material to feed off these galaxies just contain aging stars.

So it seems that having a growing number of elliptical galaxies in your backyard is a sign that you live in a universe that is losing its fresh, infrared flush of youth.

Further reading: Berta et al Building the cosmic infrared background brick by brick with Herschel/PEP

Tagged as: cosmic infrared background


View the original article here

More to Meets the Eye in M33

The spiral galaxy M33 is one of the largest galaxies in our local group. This spiral galaxy is moderately tilted when viewed from Earth, displaying a lack of a distinct central bulge but prominent spiral arms. It has only one potential companion galaxy (the Pisces Dwarf) and its spiral arms are so pristine, they have been thought to be unperturbed by the accretion of dwarf galaxies that constantly occurs in the Milky Way and Andromeda galaxy. Yet these features are what has made M33 so hard to explain. Since larger galaxies are expected to form from the merger of smaller galaxies it is expected that M33 should show some scars from previous mergers. If this picture is true, where are they?

The role of galaxy accretion in our own galaxy was first revealed in 1994 with the discovery of the Sagittarius stellar stream. With the completion of the first Sloan Digitised Sky Survey, many more tidal streams were revealed in our own galaxy. Modeling of the kinematics of these streams suggested they should last billions of years before fading into the rest of the galaxy. Deep imaging of the Andromeda galaxy revealed stellar streams as well as a notable warping of the disc of the galaxy.

Yet M33 seems to lack obvious signs of these structures. In 2006, a spectroscopic study analyzed the bright red giants in the galaxy and found three distinct populations. One could be attributed to the disc, one to the halo, but the third was not immediately explicable. Could this be the relic of an ancient satellite?

Another potential clue on missing mergers was discovered in 2005 when a radio survey around M33 was conducted with the Arecibo telescope. This study uncovered large clouds with a thousand to a million solar masses worth of raw hydrogen suspended around the galaxy. Might these be incomplete dwarf galaxies that never merged into M33? A new study uses the Subaru telescope atop Mauna Kea to study these regions as well as the outskirts of M33 to better understand their history.

The team, led by Marco Grossi at the Observatorio Astronomico de Lisboa in Portugal, did not find evidence of a stellar population in these clouds suggesting they were not likely to be galaxies in their own right. Instead, they suggest that these clouds may be analogous to hydrogen clouds around the Milky Way and Andromeda which are “often found close to stellar streams or disturbances in the stellar disc” where gas is pulled from a former satellite galaxy through tidal or ram-pressure stripping. This would constitute another piece of indirect evidence that M33 once underwent mergers of some sort.

Outside of these clouds, in the outskirts of the galaxy, the team uncovered a diverse population of stars beyond the main disc. The overall metallicity of these stars was lower, but it also included some younger stars. At such a distance, these young stars would not be expected unless accreted.

While this finding doesn’t fully answer the question of how M33 may have formed, it does reveal that this galaxy has likely not evolved in the isolation previously assumed.

Tagged as: galactic evolution, m33, spiral galaxies


View the original article here

Thursday, June 23, 2011

Enceladus’ Salty Surprise

Enceladus' signature ice geysers in action. NASA / JPL / SSI

Researchers on the Cassini mission team have identified large salt grains in the plumes emanating from Saturn’s icy satellite Enceladus, making an even stronger case for the existence of a salty liquid ocean beneath the moon’s frozen surface.

Cassini first discovered the jets of water ice particles in 2005; since then scientists have been trying to learn more about how they behave, what they are made of and – most importantly – where they are coming from. The running theory is that Enceladus has a liquid subsurface ocean of as-of-yet undetermined depth and volume, and pressure from the rock and ice layers above combined with heat from within force the water up through surface cracks near the moon’s south pole. When this water reaches the surface it instantly freezes, sending plumes of ice particles hundreds of miles into space.

Enceladus inside the E ring

Much of the ice ends up in orbit around Saturn, creating the hazy E ring in which Enceladus resides.

Although the discovery of the plumes initially came as a surprise, it’s the growing possibility of liquid water that’s really intriguing – especially that far out in the Solar System and on a little 504-km-wide moon barely the width of Arizona. What’s keeping Enceladus’ water from freezing as hard as rock? It could be tidal forces from Saturn, it could be internal heat from its core, a combination of both – or something else entirely… astronomers are still hard at work on this mystery.

Now, using data obtained from flybys in 2008 and 2009 during which Cassini flew directly through the plumes, researchers have found that the particles in the jets closest to the moon contain large sodium- and potassium-rich salt grains. This is the best evidence yet of the existence of liquid salt water inside Enceladus – a salty underground ocean.

“There currently is no plausible way to produce a steady outflow of salt-rich grains from solid ice across all the tiger stripes other than salt water under Enceladus’s icy surface.”

– Frank Postberg, Cassini team scientist, University of Heidelberg, Germany

Looking down into a jetting "tiger stripe"

If there indeed is a reservoir of liquid water, it must be pretty extensive since the numerous plumes are constantly spraying water vapor at a rate of 200 kg (400 pounds) every second – and at several times the speed of sound! The plumes are ejected from points within long, deep fissures that slash across Enceladus’ south pole, dubbed “tiger stripes”.

Recently the tiger stripe region has also been found to be emanating a surprising amount of heat, even further supporting a liquid water interior – as well as an internal source of energy. And where there’s liquid water, heat energy and organic chemicals – all of which seem to exist on Enceladus – there’s also a case for the existence of life.

“This finding is a crucial new piece of evidence showing that environmental conditions favorable to the emergence of life can be sustained on icy bodies orbiting gas giant planets.”

– Nicolas Altobelli, ESA project scientist for Cassini

Enceladus has intrigued scientists for many years, and every time Cassini takes a closer look some new bit of information is revealed… we can only imagine what other secrets this little world my hold. Thankfully Cassini is going strong and more than happy to keep on investigating!

“Without an orbiter like Cassini to fly close to Saturn and its moons — to taste salt and feel the bombardment of ice grains — scientists would never have known how interesting these outer solar system worlds are.”

– Linda Spilker, Cassini project scientist at JPL

The findings were published in this week’s issue of the journal Nature.

Read more in the NASA press release here.

Image credits: NASA / JPL / Space Science Institute

__________________

Jason Major is a graphic designer, photo enthusiast and space blogger. Visit his website Lights in the Dark and follow him on Twitter @JPMajor or on Facebook for the most up-to-date astronomy awesomeness!

Tagged as: Astrobiology, Cassini, Enceladus, ocean, salt, Saturn


View the original article here

Cygnus X-1: Blue Supergiant Pairs With Black Hole

This X-ray image of Cygnus X-1 was taken by a balloon-borne telescope, the High Energy Replicated Optics (HERO) project. NASA image.

Discovered in 1964 during a rocket flight, Cygnus X-1 holds the record for being the strongest X-ray source seen from Earth. The blue supergiant star designated as HDE 226868 is just part of this high-mass X-ray binary system… the other is a black hole.

“We present a detailed study of the X-ray dust scattering halo of the black hole candidate based on two Chandra\ HETGS observations. Using 18 different dust models, including one modified by us (dubbed XLNW), we probe the interstellar medium between us and this source.” says Jingen Xiang, et al. “A consistent description of the cloud properties along the line of sight that describes at the same time the halo radial profile, the halo lightcurves, and the column density from source spectroscopy is best achieved with a small subset of these models… The remainder of the dust along the line of sight is close to the black hole binary.”

Located about 6,000 light years from Earth as measured by the Hipparcos satellite (but this value has a relatively high degree of uncertainty), Cygnus X-1 has been the topic for a huge amount of astronomical studies for nearly 50 years. We’re aware the blue supergiant variable star orbits its unseen companion at roughly 1/5 the distance of the Sun to the Earth (0.2 AU), and we surmised that stellar wind accounted for the accretion disk around the X-ray source. We are also aware of a pair of jets spewing material into interstellar space. Deep inside, superheated materials are sending out copious amounts of X-rays, but what else lay beyond? Can we separate star from event horizon with accuracy?

“We report a direct and accurate measurement of the distance to the X-ray binary Cygnus X-1, which contains the first black hole to be discovered. The distance of 1.86(-0.11,+0.12) kpc was obtained from a trigonometric parallax measurement using the Very Long Baseline Array. The position measurements are also sensitive to the 5.6 d binary orbit and we determine the orbit to be clockwise on the sky.” says Mark J. Reid, et al. “We also measured the proper motion of Cygnus X-1 which, when coupled to the distance and Doppler shift, gives the three-dimensional space motion of the system. When corrected for differential Galactic rotation, the non-circular (peculiar) motion of the binary is only about 21 km/s, indicating that the binary did not experience a large “kick” at formation.”

If you don’t think this is exciting news, then think again. “The compact primary in the X-ray binary Cygnus X-1 was the first black hole to be established via dynamical observations.” says Lijun Gou. “We have recently determined accurate values for its mass and distance, and for the orbital inclination angle of the binary. Building on these results, which are based on our favored (asynchronous) dynamical model, we have measured the radius of the inner edge of the black hole’s accretion disk by fitting its thermal continuum spectrum to a fully relativistic model of a thin accretion disk.”

Determining the spin rate has been high on the list of observations – and difficult because it changed states periodically. Only when it is in a soft spectral state can accurate measurements be taken. Oddly enough, for all the countless observations taken of Cygnus X-1 over the years, it has never been caught in a thermal dominant state. To that end, the black hole spin is measured by estimating the inner radius of the accretion disk.

“Our results take into account all significant sources of observational and model-parameter uncertainties, which are dominated by the uncertainties in black hole mass, orbital inclination angle and distance.” says the team. “The uncertainties introduced by the thin-disk model we employ are particularly small in this case, given the disk’s low luminosity.”

Heisenberg would be so proud….

Original Story Souce: Cornell University Library with facts from Wikipedia.


View the original article here

Spiderwebs in Spaaaace!

Most houses have at least a few cobwebs in corners or down in the basement, and now the decade-old International Space Station has some spiderwebs, too. But it’s not because the astronauts have neglected cleaning — it’s all in the name of science. Two golden orb spiders named Gladys and Esmerelda are living on the International Space Station in separate habitat chambers, and scientists are watching the behavioral and physical changes of the spiders and how they spin their webs in space. The experiment was launched aboard Space Shuttle Endeavour in May of this year and transferred to the ISS. Students from all over the US are conducting analog experiments in their classrooms to determine how the spiders are adapting to their microgravity environment.

The video above is a 26 day timelapse of spiders in space.

Each chamber contains a food supply of fruit flies, and is equipped with cameras and lighting systems. The lights are set to a 24-hour cycle that provides 12 hours of “daylight,” and 12 hours of “nighttime.” Night photographs are captured using infrared light.

Hourly images of the spiders are available on BioEd Online. At the same link, there’s also a free Spiders in Space guide which contains instructions for setting up ground-based spider habitats and helping students to design their own spider investigations. Students are encouraged to compare their Earth-based spiders to photos of spiders living in space.

The project is being overseen by the Baylor College of Medicine Center for Educational Outreach in conjunction with BioServe Space Technologies.

Via Wired Science

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.

Tagged as: ISS Science, Science, Space Station, Spiders


View the original article here

White Dwarf Stars Predict Our Solar System’s Demise

A Hubble Space Telescope color image of a small portion of the cluster only 0.63 light-years across reveals eight white dwarf stars (inside blue circles) among the cluster's much brighter population of yellow sun-like stars and cooler red dwarf stars. (Credit: Harvey Richer (University of British Columbia, Vancouver, Canada) and NASA)

With no more volume than could be contained within a teaspoon, the material that makes up a white dwarf star weighs tons. Smaller than the diameter of Earth, and a direct family member of stars like our own Sol, these stellar gnomes could predict our eventual fate.

Using data from the Hubble Space Telescope, Nathan Dickinson, a postgraduate student in the University’s Department of Physics and Astronomy, is hard at work analyzing chemical compositions of white dwarf stars for his PhD. Unlike many students interested in “heavy metal”, Dickinson is more interested in “heavy elements”. The older, more cool models could contain elements such as oxygen, nitrogen, silicon… while the hot youngsters show heavy elements like calcium and magnesium. These weighty basics occur at extreme heat and sometimes, even to excess. The cremation generation?

“Understanding whether the extra material in hot white dwarfs comes from torn up planets is important,” emphasizes Dickinson. “It can give us an idea of how these ancient planetary systems evolve as the star ages, so we get a fuller picture of how solar systems die. However, they sometimes exhibit more of this material than is expected, which raises the question of whether this extra material also came from planets or whether it originated elsewhere, perhaps in clouds around the star.”

Past research has shown that anywhere from 1 to 3% of white dwarf stars can be contaminated by an influx of materials from closely orbiting dust clouds. What makes up these clouds? It could be rocky debris like asteroids. Held within the Roche Limit, these planetoids are mulched by gravitational tides – just like Saturn’s ring system.

“Working at the forefront of this scientific area is extremely exciting,” says Dickinson. “I find being one of a relatively small community of people in the world to work on this particular area amazing. This work is helping to shape our understanding of how most stars end their lives, how solar systems die, how the environment around these ancient stars behaves and what will ultimately happen to the vast majority of stars in the galaxy.”

And really close to home…

Original Story Source: Science Daily.


View the original article here

Packing a Mars Rover for the Trip to Florida; Time Lapse Video

Check out this way cool time-lapse movie of NASA’s Curiosity Mars rover as its being packed up for her trip to Florida.

The video covers a 4 day period from June 13 to 17 and is condensed to just 1 minute. Watch the JPL engineers and technicians prepare Curiosity and the descent stage for shipping to the Kennedy Space Center in Florida and place it inside a large protective shipping container.

The rover and descent stage will be delivered to the Payload Hazardous Servicing Facility at KSC is the next stop for Curiosity on its way to Destination Mars. Curiosity will be shipped to Florida in the next few days. The facility is used for NASA landers subject to the most stringent planetary protection requirements.

Curiosity will be delivered to a high tech cleanroom at KSC. After arriving, the rover will undergo a wide ranging series of flight system checks to insure the rover is ready to rove on the red planet and that it survived the shipping across the US. Also, installation of the final few components including the RTG power source will be completed.

The launch window for Curiosity open on November 25. The rover will blast to space atop a powerful Atlas V rocket from Launch Complex 41 at Cape Canaveral Air Force Station, Florida.

Curiosity is larger than Spirit and Opportunity, measuring some three meters long and equipped with a much more powerful array of science instruments. Curiosity will search for environmental conditions that could have been conducive to supporting martian life – in the past or present – if it ever even existed.


View the original article here

MESSENGER Unveiling Mercurys Hidden Secrets

Spectacular view of the Degas crater from MESSENGER in Mercury orbit. This high-resolution view of Degas crater was obtained as a targeted observation (90 m/pixel). Impact melt coats its floor, and as the melt cooled and shrank, it formed the cracks observed across the crater. For context, Mariner 10’s view of Degas is shown at left. Degas is 52 km in diameter and is centered at 37.1° N, 232.8° E. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington


NASA’s MESSENGER probe to Mercury, the scorched, innermost planet of our solar system, is sending back so much startling and revolutionary data and crystal clear images that the results are forcing scientists to toss out previously cherished theories and formulate new ones even as the results continues to pour in. And the mission has barely begun to explore Mercury’s inner secrets, exterior surface and atmospheric environment.

MESSENGER became the first spacecraft ever to orbit planet Mercury on March 18, 2011 and has just completed the first quarter of its planned one year long mission – that’s the equivalent of one Mercury year.

MESSENGER has collected a treasure trove of new data from the seven instruments onboard yielding a scientific bonanza; these include extensive global imagery, measurements of the planet’s surface chemical composition, topographic evidence for significant amounts of water ice, magnetic field and interactions with the solar wind, reported the science team at a press conference at NASA Headquarters.

Schematic illustration of the operation of MESSENGER's X-ray Spectrometer (XRS). When X-rays emitted from the Sun’s corona strike the planet, they can induce X-ray fluorescence from atoms at the surface. Detection of these fluorescent X-rays by the XRS allows determination of the surface chemical composition. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

“We are delighted to share the findings of the first 25% of our year long mission,” said MESSENGER principal investigator Sean Solomon of the Carnegie Institution of Washington at a press briefing for reporters. “We receive new data back almost every day.”

“MESSENGER has snapped over 20,000 images to date,” said Solomon, at up to 10 meters per pixel. The probe has also taken over two million laser-ranging topographic observations, discovered vast volcanic plains, measured the abundances of many key elements and confirmed that bursts of energetic particles in Mercury’s magnetosphere result from the interaction of the planets magnetic field with the solar wind.

“We are assembling a global overview of the nature and workings of Mercury for the first time.”

“We had many ideas about Mercury that were incomplete or ill-formed, from earlier flyby data,” explained Solomon. “Many of our older theories are being cast aside into the dust bin as new observations from new orbital data lead to new insights. Our primary mission has another three Mercury years to run, and we can expect more surprises as our solar system’s innermost planet reveals its long-held secrets.”

Magnetic field lines differ at Mercury's north and south poles As a result of the north-south asymmetry in Mercury's internal magnetic field, the geometry of magnetic field lines is different in Mercury's north and south polar regions. In particular, the magnetic "polar cap" where field lines are open to the interplanetary medium is much larger near the south pole. This geometry implies that the south polar region is much more exposed than in the north to charged particles heated and accelerated by solar wind–magnetosphere interactions. The impact of those charged particles onto Mercury's surface contributes both to the generation of the planet's tenuous atmosphere and to the "space weathering" of surface materials, both of which should have a north-south asymmetry given the different magnetic field configurations at the two poles. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

NASA’s Mariner 10 was the only previous robotic probe to explore Mercury, during three flyby’s back in the mid-1970’s early in the space age.

MESSENGER was launched in 2004 and the mission goal is to produce the first global scientific observations of Mercury and piece together the puzzle of how Mercury fits in with the origin and evolution of our solar system.

There was very little prior imaging coverage of Mercury’s northern polar region.

“We’ve now filled in many of the gaps,” said Messenger scientist Brett Denevi of Johns Hopkins University’s Applied Physics Laboratory (APL). “We now see large smooth plains that are thought to be volcanic in origin.”

“Now we’re seeing for the first time their full extent, which is around 4 million square kilometers (1.54 million square miles). That’s about half the size of the continental United States.”

MESSENGER is currently filling in coverage of Mercury’s north polar region, which was seen only partially during the Mariner 10 and MESSENGER flybys. Flyby images indicated that smooth plains were likely important in Mercury’s northernmost regions. MESSENGER's orbital images show that the plains are among the largest expanses of volcanic deposits on Mercury, with thicknesses of several kilometers in many places. The estimated extent of these plains is outlined in yellow. This mosaic is a combination of flyby and orbital coverage in a polar stereographic projection showing latitudes from 50° to 90° N. The longitude at the 6 o'clock position is 0°. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

“We see all kinds of evidence for volcanism and tectonic deformation of the plains from orbit where we can look straight down,” added Denevi. “In the new images we see ghost craters from pre-existing impact craters that were later covered over by lava.’

Color images of the whole planet – with a resolution of about 1 kilometer per pixel – tell the researchers about the chemical composition and rock types on Mercury’s surface.

“We don’t know the composition yet.”

“We are very excited to study these huge volcanic deposits near the north pole with the implications for the evolution of Mercury’s crust and how it formed,” said Denevi.

“Targeted new high resolution imaging is helping us see landforms unlike anything we’ve seen before on Mercury or the moon.”

MESSENGER’s orbital images have been overlaid on an image from the second flyby shown in Image 1.2a. Even for previously imaged portions of the surface, orbital observations reveal a new level of detail. This region is part of the extensive northern plains, and evidence for a volcanic origin can now be seen. Several examples of “ghost” craters, preexisting craters that were buried by the emplacement of the plains, are seen near the center of the mosaic. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Determining whether Mercury harbors caches of polar water ice is another one of the many questions the MESSENGER science team hopes to answer.

Two decades ago, Earth-based radar images showed deposits thought to consist of water ice near Mercury’s north and south poles. Researchers postulated a theory that these icy deposits are preserved on the cold, permanently shadowed floors of high-latitude impact craters, similar to those on Earth’s moon.

Early results from topographic measurements are promising.

“The very first scientific test of that hypothesis using Messenger data from orbit has passed with flying colors.”

“The area of possible polar water ice is quite a bit larger than on the moon,” said Solomon. “Its probably meters or more in depth based on radar measurements.”

“And we may have the irony that the planet closest to the sun may have more water ice at its poles than even our own moon.”

“Stay tuned. As this mission evolves, we will be relying on the geochemical and remote sensing instruments which take time to collect observations. The neutron and gamma ray spectrometers have the ability to tell us the identity of these icy materials,” said Solomon.

The same scene as that in Image 1.3a is shown after the application of a statistical method that highlights differences among the eight color filters, making variations in color and composition easier to discern. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

This topographic contour map was constructed from the several MLA profiles (lines of white circles) that pass through and near the crater circled in Image 3.4. The color scale at right is in km, and north is at the 4 o’clock position. Calculations show that the topography of the crater is consistent with the prediction that the southernmost portion of the crater floor is in permanent shadow. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

A cross-section of Mercury’s magnetosphere (in the noon-midnight plane, i.e., the plane containing the planet-Sun line and Mercury’s spin axis) provides context for the energetic electron events observed to date with the MESSENGER XRS and GRS high-purity germanium (HpGe) detectors. The Sun is toward the right; dark yellow lines indicate representative magnetic field lines. Blue and green lines trace the regions along MESSENGER's orbit from April 2 to April 10 during which energetic electrons were detected and MESSENGER's orbit was within ± 5° of the noon-midnight plane. The presence of events on the dayside, their lack in the southern hemisphere, and their frequency of occurrence at middle northern latitudes over all longitudes point to a more complex picture of magnetospheric activity than found at Earth. Credit: NASA/The Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Tagged as: Mercury, MESSENGER, NASA, planet mercury


View the original article here

Is This a Scene from Star Wars or a Real Image from the ISS?

ATV2 (Johannes Kepler) as it departs the ISS against the backdrop of Earth. Credit: NASA/Ron Garan

What an amazing image! The ATV-2 Johannes Kepler looks like an X-Wing fighter from Star Wars as it departed from the International Space Station. Astronaut Ron Garan posted the image on his Twitpic page, asking viewers if they thought the spacecraft looked like the fictional fighter jets of the Alliance.

The ATV-2 left the ISS and entered Earth’s atmosphere on June 21. The spacecraft had a “blackbox” on board, a Re-Entry Breakup Recorder (REBR) to monitor temperature, acceleration, rotation rate, and other data as it tumbled and disintegrated through the atmosphere. The data was sent down via a “phone call” to an Iridium satellite to help scientists better understand the physics of what happens to a spacecraft when it breaks up on re-entry.

So, enjoy one last beautiful look at the ATV-2 in this stunning image.

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.

Tagged as: ATV-2 Johannes Kepler, ISS, Physics


View the original article here

Spying on Spy Satellites with Thierry Legault

Ground-based images of three different classified satellites: the X-37B, USA-186 Keyhole, and the LaCrosse 3. Credit: Thierry Legault and Emmanuel Rietsch

Shhhh! Don’t tell anyone, but we’ve got pictures….. ground-based pictures of secret spy satellites in Earth orbit. We’re not revealing our sources, but … oh wait, I guess we might as well tell you. Even if we didn’t reveal our source, you’d probably guess that astrophotographer extraordinaire Thierry Legault — who has been sharing his wonderfully detailed ground-based images of the space shuttle and International Space Station with Universe Today – has been working on capturing other satellites in orbit as well. Legault and his partner in imaging crime, Emmanuel Rietsch have tackled the difficult task of tracking down spy satellites and then tracking them with a telescope. For imaging the shuttle and ISS, they developed their own design of a motorized mount outfitted with a computer program so it can slowly and precisely rotate in order to track and follow an object in Earth orbit with a telescope and video camera. Now they are able to image even smaller objects.

Above are images they were able to capture of three different spy satellites, including the X-37B spaceplane. More images and videos are available at Legault’s website.

Thierry Legault with his customized satellite tracking system. Photo courtesy Thierry Legault.

Since October 2010, Legault has been using the autoguided mount, with the help of a DMK 31AF03 Firewire video camera mounted on the finder (FL 200 mm) and of the software Videos Sky, created by Rietsch, and then modified by Reitsch and Legault for fast tracking with the Takahashi EM400 mount.

The X-37B spaceplane now in orbit is the second of the two Orbital Test Vehicles launched by the US Air Force, launched on March 5, 2011. Reportedly, it will conduct experiments and tests for close to nine months and then autonomously de-orbit and land. Legault and Rietsch were able to image the spaceplane in late May of this year with fairly good results.

“I tried to get help to identify the real orientation of X-37B,” Legault told Universe Today via Skype today, “but on the contrary of the Keyhole and Lacrosse satellites, it’s not easy considering its complex shape with several wings.”

And the Air Force isn’t telling.

“Keyhole-class” (KH) reconnaissance satellites have been used for more than 30 years and are typically used to take overhead photos for military missions. Some of the keyhole satellites resemble the Hubble Space Telescope, but instead of looking out into space, it looks back at Earth. A similar type of spy satellites are the Lacrosse satellites, which are radar-imaging satellites.

But even with the tracking system, getting images of small satellites is not easy. “Despite this performing tracking system and hours of training on airplanes passing in the sky, keeping the space ship inside a sensor of a few millimeters at a focal length of 5000 mm and a speed over 1°/s needs a lot of concentration and training,” said Legault on his website.

The autoguiding and acquisition are done via a laptop with a double hard drive (one of which is a Solid State Drive – made with flash memory), enabling the precision of tracking of about one arc minute.

For security reasons, the sighting times for spy satellites are not published on an official website like NASA does for the shuttle and ISS. But with a bit of digging, Legault said others can try their luck at trying to spot these secret satellites.

“Orbital data are in the Calsky database,” Legault told UT, “therefore their passages are forecast as for the ISS. Generally, orbits are determined by amateurs, some of them are specialized in this activity, especially Kevin Fetter (and data are exchanged on the Seesat mailing list, owned by Ted Molczan).”

Legault is well-known for his images of the shuttle and ISS transiting the sun, but he said the accuracy of orbital data for the spy satellites is not sufficient for capturing a solar transit – and besides, these satellites are much smaller than the ISS and would appear as a small dark dot, at best.

“But for nighttime passages the data is sufficient,” Legault said. “Generally they are not visible with the naked eye or barely (except during flares), but they are easily visible with a finder.”

See more information, information and videos — including a view of what the tracker sees, on Legault’s website.

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.

Tagged as: astrophotography, Keyhole Spy Satellites, Lacrosse spy satellites, Satellites, Thierry Legault, X37-B


View the original article here

Model Lighting Ordinance Means Preservation Of Future Dark Skies

Image Courtesy of IDA

For every astronomer everywhere – and even naturalists – the need to preserve dark skies has been an issue tackled by the International Dark Skies Association for over two decades. It’s more than just asking your neighbor to turn off their porch light while you’re observing. It’s about light pollution as a whole – from government to community lighting. In the past the IDA has relied on education, but now things could be getting a whole lot better.

“IDA and the Illuminating Engineering Society (IES) proudly announce public release of the Model Lighting Ordinance (MLO) as a valuable guide for environmentally responsible outdoor lighting in North America.” says the organization. “Developed jointly by the IDA and the IES over a period of seven years, the IDA/IES partnership will encourage broad adoption of comprehensive outdoor lighting ordinances without devoting extensive staff time and resources to their development.”

In a time of budget cuts and pressure on volunteer time, such programs like the MLO are absolutely invaluable. This guide will enable communities to make responsible decisions about outdoor lighting standards… effectively reducing glare, light trespass, and skyglow. Studies have shown these three culprits of light pollution wreak havoc on more than just astronomy – it affects our own human biorhythms, wildlife and more. By having a standard that’s easy and cost effective to follow, things can be changed.

“The MLO offers several innovations to outdoor lighting regulation, including the use of five lighting zones to classify land use with appropriate lighting levels for each. Zones range from LZ0, designed for pristine natural environments and limited outdoor lighting, to LZ4, for limited application in areas of extensive development in the largest cities. The second innovation limits the amount of light used for each property.” says the group. “Third, the MLO uses the IES’s new TM-15 -11 “BUG” (Backlight, Uplight and Glare) classification of outdoor lighting fixtures to ensure that only well-shielded fixtures are used. No uplight for area and street lighting is allowed in any zone. The MLO will be revised on a regular basis to include new information, feedback from municipalities using it and changes to IES standards.”

Will these new guidelines be adopted by government and industry? You might be surprised at just how well concepts of this type can be accepted when you can show how they are not only cost effective, but energy saving as well. Not everyone around the world reacts in a negative way when asked to cut lighting – especially when they realize a group is tackling major concerns such as security and safety.

Bob Parks, executive director of IDA, hopes for widespread application. “The MLO will give communities the tool they need to control outdoor lighting and the assurance that the outcome will meet the international standards developed by the IES,” states Parks. “The MLO will accelerate adoption of quality outdoor lighting practices in municipalities of all sizes and show planners how to improve the quality of outdoor lighting while saving energy and reducing operating cost.”

Robert Horner, director of public policy for the IES, expresses similar expectations, stating, “The IES is proud to have produced, in partnership with the IDA, the first Model Lighting Ordnance. This will give states and municipalities the ability to enact effective outdoor lighting legislation and codes, while maintaining the necessary lighting quality for a safe and secure lighted environment and meeting all relevant IES standards and practices.”

In the meantime, get involved with your community and the IDA. Our dark skies future starts with you…

Original Story Source: International Dark Sky Association and Model Lighting Ordinance.


View the original article here